Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Shan Gao,* Zhu-Yan Zhang, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080,
People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.027$
$w R$ factor $=0.075$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## Hexaaquazinc(II) bis[(4-oxo-4H-pyridin-1-yl)acetate] dihydrate

The title complex, $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was synthesized and characterized by X-ray crystallography. The zinc(II) ion, which lies on a center of symmetry, is coordinated by six water molecules, forming an octahedron. A three-dimensional supramolecular framework is formed via hydrogen bonds between the anions and cations.

## Comment

There is interest in metal complexes containing nitrogenheterocycle carboxylic acid ligands (Kondo et al., 2002; Premkumar \& Govindarajan, 2003). (4-Oxo-4H-pyridin-1yl)acetic acid, an important medical intermediate (Edwards et al., 1977), is a multidentate ligand with a versatile binding mode, but there is little information available about the structure of its metal complexes. The reaction of (4-oxo-4H-pyridin-1-yl)acetic acid and zinc(II) acetate yielded a new zinc ${ }^{\text {II }}$ complex, $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), the crystal structure of which is reported here, and in which the organic anion does not act as a ligand.


$+2 \mathrm{H}_{2} \mathrm{O}$
(I)

As shown in Fig. 1, the asymmetric unit of (I) consists of one-half of a $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation, a (4-oxo-4H-pyridin-1-yl)acetate anion and an uncoordinated water molecule. In the cation, the zinc ${ }^{\text {II }}$ atom occupies an inversion site and is coordinated by six water molecules in an octahedral geometry. The $\mathrm{Zn}-\mathrm{O}$ bond lengths range from 2.076 (1) to 2.096 (1) $\AA$ (Table 1). The cation interacts with the uncoordinated water
Figure 1



The components of the title compound, with $30 \%$ probability displacement ellipsoids.


Figure 2
Packing diagram of the complex, viewed along the $c$ axis. Hydrogen bonds are shown as dashed lines.
molecules via intermolecular hydrogen bonds (Table 2). The carboxy group and pyridine ring in the (4-oxo- 4 H -pyridin-1yl )acetate anion are not coplanar, and the $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ bond angle is $114.0(1)^{\circ}$. The $\mathrm{C} 3-\mathrm{C} 4, \mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{C} 5-\mathrm{O} 3$ bond lengths are 1.359 (2), 1.356 (2) and 1.276 (2) $\AA$, respectively. The structure can be envisaged as one in which layers of anions alternate with layers of cations (Fig. 2), and the layers are linked by hydrogen bonds, giving rise to a three-dimensional supramolecular network.

## Experimental

The title complex was prepared by the addition of $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4.40 \mathrm{~g}, 20 \mathrm{mmol})$ to an aqueous solution of (4-oxo- 4 H -pyridin-1-yl)acetic acid $(58.40 \mathrm{~g}, 40 \mathrm{mmol}$ ). The pH was adjusted to 7 with 0.2 M NaOH solution. Colorless single crystals were obtained from the filtered solution over a period of several days. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Zn}$ : C 32.73, H 5.49, N 5.45\%; found: C 32.95 , H 5.60, N 5.29\%.

## Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Zn}_{\mathrm{n}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}} \\
& M_{r}=513.75 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=12.427(3) \AA \\
& b=12.833(3) \AA \\
& c=6.7816(14) \AA \\
& \beta=98.62(3)^{\circ} \\
& V=1069.3(4) \AA^{3} \\
& Z=2
\end{aligned}
$$

## Data collection

Rigaku R-AXIS RAPID
diffractometer

## $\omega$ scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.703, T_{\text {max }}=0.810$
9929 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.075$
$S=1.05$
2447 reflections
158 parameters
H atoms treated by a mixture of independent and constrained refinement

2447 independent reflections
2251 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-16 \rightarrow 16$
$l=-8 \rightarrow 8$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0454 P)^{2}\right. \\
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0454 P)^{2}\right. \\
& +0.3156 P \text { ] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.040 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

|  |  |  |  |
| :--- | :--- | :--- | ---: |
| Zn1-O3W | $2.076(1)$ | $\mathrm{O} 2-\mathrm{C} 1$ | $1.262(2)$ |
| $\mathrm{Zn} 1-\mathrm{O} 2 W$ | $2.077(1)$ | $\mathrm{O} 3-\mathrm{C} 5$ | $1.276(2)$ |
| $\mathrm{Zn} 1-\mathrm{O} 1 W$ | $2.096(1)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.359(2)$ |
| $\mathrm{O} 1-\mathrm{C} 1$ | $1.242(2)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.356(2)$ |
|  |  |  |  |
| $\mathrm{O} 3 W-\mathrm{Zn} 1-\mathrm{O} 2 W^{\vee}$ | $91.52(5)$ | $\mathrm{O} 3 W-\mathrm{Zn} 1-\mathrm{O} 1 W$ | $89.07(5)$ |
| $\mathrm{O} 3 W-\mathrm{Zn} 1-\mathrm{O} 2 W$ | $88.48(5)$ | $\mathrm{O} 2 W-\mathrm{Zn} 1-\mathrm{O} 1 W$ | $92.22(6)$ |
| $\mathrm{O} 2 W-\mathrm{Zn} 1-\mathrm{O} 1 W^{\vee}$ | $87.78(6)$ | $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ | $114.0(1)$ |
| $\mathrm{O} 3 W^{\vee}-\mathrm{Zn} 1-\mathrm{O} 1 W$ | $90.93(5)$ |  |  |

Symmetry code: (v) $1-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1 W-\mathrm{H} 8 A \cdots \mathrm{O} 4 W$ | 0.82 | 1.93 | 2.720 (2) | 161 |
| $\mathrm{O} 1 W-\mathrm{H} 8 B \cdots \mathrm{O} 2^{\text {i }}$ | 0.82 (2) | 2.04 (1) | 2.836 (2) | 166 (2) |
| $\mathrm{O} 2 W-\mathrm{H} 9 A \cdots \mathrm{O} 1^{\text {ii }}$ | 0.82 | 1.89 | 2.694 (2) | 164 |
| $\mathrm{O} 2 W-\mathrm{H} 9 B \cdots \mathrm{O} 3^{\text {iii }}$ | 0.80 (2) | 1.94 (1) | 2.730 (2) | 177 (2) |
| $\mathrm{O} 3 W-\mathrm{H} 10 A \cdots \mathrm{O} 2^{\text {iv }}$ | 0.82 | 1.88 | 2.690 (2) | 170 |
| $\mathrm{O} 3 W-\mathrm{H} 10 B \cdots \mathrm{O}^{2}$ | 0.84 (2) | 2.09 (1) | 2.837 (2) | 147 (1) |
| $\mathrm{O} 4 W-\mathrm{H} 11 B \cdots \mathrm{O} 3^{\text {vi }}$ | 0.84 (2) | 2.00 (1) | 2.794 (2) | 159 (2) |
| $\mathrm{O} 4 W-\mathrm{H} 11 A \cdots 3^{\text {vii }}$ | 0.83 (2) | 2.20 (1) | 2.980 (2) | 157 (2) |

Symmetry codes: (i) $x, y, 1+z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $2-x,-y,-z$; (iv) $1-x, y-\frac{1}{2},-\frac{1}{2}-z$; (v) $1-x,-y,-z$; (vi) $x-1, y, 1+z$; (vii) $x-1, \frac{1}{2}-y, \frac{1}{2}+z$.

Carbon-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were included in the refinement in the riding-model approximation. Water atoms $\mathrm{H} 8 A, \mathrm{H} 9 A$ and $\mathrm{H} 10 A$ were located in difference Fourier synthesis maps and refined with a riding model, with the $\mathrm{O}-\mathrm{H}$ distances restrained to $0.82(1) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007) and Educational Committee Foundation of Heilongjiang Province.

## References

Edwards, M. L., Bambury, R. E. \& Ritter, H. W. (1977). J. Med. Chem. 20, 560563.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Kondo, M., Miyazawa, M., Irie, Y., Shinagawa, R., Horiba, T., Nakamura, A., Naito, T., Maeda, K., Utsuno S. \& Uchida, F. (2002). Chem. Commun. pp. 2156-2157.

Premkumar, T. \& Govindarajan, S. (2003). Inorg. Chem. Commun. 6, 13851389.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

